RNA Polymerase II Holoenzyme Recruitment Is Sufficient to Remodel Chromatin at the Yeast PHO5 Promoter

نویسندگان

  • Luc Gaudreau
  • Andrea Schmid
  • Dorothea Blaschke
  • Mark Ptashne
  • Wolfram Hörz
چکیده

We examine transcriptional activation and chromatin remodeling at the PHO5 promoter in yeast by fusion proteins that are thought to act by recruiting the RNA polymerase II holoenzyme to DNA in the absence of a classic activating region. These hybrid proteins (e.g., Gal11+Pho4 or Gal4(58-97)+Pho4 in the presence of a GAL11P allele) efficiently activated transcription and remodeled chromatin. Similar chromatin remodeling was observed at a PHO5 promoter deleted for TATA and thus unable to support transcription. We conclude that recruitment of the holoenzyme or associated proteins suffices for chromatin remodeling. We also show that the SWI/SNF complex is required neither for efficient transcription of the wild-type PHO5 nor the GAL1 promoters, and we observe nearly complete chromatin remodeling at PHO5 in the absence of Snf2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A role for noncoding transcription in activation of the yeast PHO5 gene.

Noncoding, or intergenic, transcription by RNA polymerase II (RNAPII) is remarkably widespread in eukaryotic organisms, but the effects of such transcription remain poorly understood. Here we show that noncoding transcription plays a role in activation, but not repression, of the Saccharomyces cerevisiae PHO5 gene. Histone eviction from the PHO5 promoter during activation occurs with normal kin...

متن کامل

Targeting of Swi/Snf to the yeast GAL1 UAS G requires the Mediator, TAF IIs, and RNA polymerase II.

The chromatin remodeling activity of the Swi/Snf complex is essential for the expression of several yeast genes. Previous studies have suggested that recruitment of Swi/Snf requires the action of transcriptional activators. However, reports in metazoans and in yeast have provided evidence of interactions between Swi/Snf and the RNA polymerase II holoenzyme/Mediator complex. Here we show that re...

متن کامل

Artificial recruitment of TFIID, but not RNA polymerase II holoenzyme, activates transcription in mammalian cells.

In yeast cells, transcriptional activation occurs when the RNA polymerase II (Pol II) machinery is artificially recruited to a promoter by fusing individual components of this machinery to a DNA-binding domain. Here, we show that artificial recruitment of components of the TFIID complex can activate transcription in mammalian cells. Surprisingly, artificial recruitment of TATA-binding protein (...

متن کامل

Artificially recruited TATA-binding protein fails to remodel chromatin and does not activate three promoters that require chromatin remodeling.

Transcriptional activators are believed to work in part by recruiting general transcription factors, such as TATA-binding protein (TBP) and the RNA polymerase II holoenzyme. Activation domains also contribute to remodeling of chromatin in vivo. To determine whether these two activities represent distinct functions of activation domains, we have examined transcriptional activation and chromatin ...

متن کامل

Intermediates in formation and activity of the RNA polymerase II preinitiation complex: holoenzyme recruitment and a postrecruitment role for the TATA box and TFIIB.

Assembly and activity of yeast RNA polymerase II (Pol II) preinitiation complexes (PIC) was investigated with an immobilized promoter assay and extracts made from wild-type cells and from cells containing conditional mutations in components of the Pol II machinery. We describe the following findings: (1) In one step, TFIID and TFIIA assemble at the promoter independently of holoenzyme. In anoth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 89  شماره 

صفحات  -

تاریخ انتشار 1997